

CIVL 7012/8012

Recap(1)

 Relationship between two variables regression analysis

Certain names are used for cause and effect

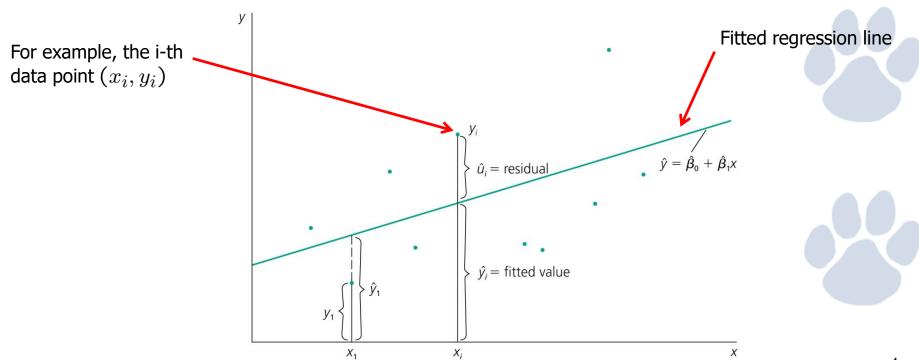
у	X	
Dependent variable	Independent variable	
Explained variable	Explanatory variable	
Response variable	Control variable	
Predicted variable	Predictor variable	
Regressand	Regressor	

Recap (2)

· Using method of moments we obtained

• Coefficient
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

provided that
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 > 0$$



$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Ordinary Least Squares-overview

- Regression-find as good fit as possible
- Resulting in residuals

OLS - estimation

Regression residuals

$$\widehat{u}_i = y_i - \widehat{y}_i = y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i$$

Minimize the square of residuals, (named OLS)

$$\min \sum_{i=1} \widehat{u}_i^2 \longrightarrow \widehat{\beta}_0, \widehat{\beta}_1$$

 Parameter estimates (take first order derivative, and equate to zero)

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Maximum Likelihood -overview

Conditional p.d.f. of Y for each x

$$p(y|X = x; \beta_0, \beta_1, \sigma^2)$$

Given any data set

$$\prod_{i=1}^{n} p(y_i|x_i;\beta_0,\beta_1,\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - (\beta_0 + \beta_1 x_i))^2}{2\sigma^2}}$$

 We don't know true parameters, but using estimated parameters, the p.d.f will be

$$\prod_{i=1}^{n} p(y_i|x_i;b_0,b_1,s^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{(y_i - (b_0 + b_1 x_i))^2}{2s^2}}$$

Maximum Likelihood - estimation

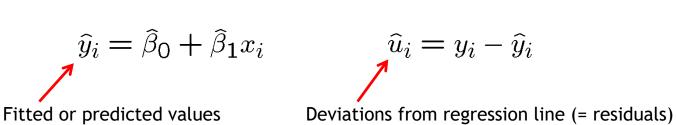
This is called likelihood function

$$\prod_{i=1}^{n} p(y_i|x_i;b_0,b_1,s^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{(y_i - (b_0 + b_1 x_i))^2}{2s^2}}$$

- It is much easier to work with log-likelihood
- Max. the log-likelihood to get parameter est.

$$L(b_0, b_1, s^2) = \log \prod_{i=1}^{n} p(y_i | x_i; b_0, b_1, s^2)$$

$$= \sum_{i=1}^{n} \log p(y_i | x_i; b_0, b_1, s^2)$$

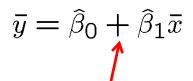

$$= -\frac{n}{2} \log 2\pi - n \log s - \frac{1}{2s^2} \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

In-class example

- Let us use an example to solve for parameter estimates
- All three methods should provide us similar estimates

OLS Assumptions

- Let us stick to OLS for the time being
- Fitted values and residuals


• Algebric properties of OLS (from last class)

$$\sum_{i=1}^{n} \widehat{u}_i = 0$$

Deviations from regression line sum up to zero

$$\sum_{i=1}^{n} x_i \hat{u}_i = 0$$

Correlation between deviations and regressors is zero

Sample averages of y and x lie on regression line

Gauss-Markov Assumptions (1)

- Standard assumptions for the linear regression model
- Assumption SLR.1 (Linear in parameters)

$$y = \beta_0 + \beta_1 x + u$$
 In the population, the relationship between y and x is linear

Assumption SLR.2 (Random sampling)

$$\{(x_i,y_i):\ i=1,\ldots n\}$$
 The data is a random sample drawn from the population

$$y_i = \beta_0 + \beta_1 x_i + u_i$$
 Each data point therefore follows the population equation

Gauss-Markov Assumptions (2)

- Assumptions for the linear regression model (cont.)
- Assumption SLR.3 (Sample variation in explanatory variable)

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 > 0$$

The values of the explanatory variables are not all the same (otherwise it would be impossible to study how different values of the explanatory variable lead to different values of the dependent variable)

Assumption SLR.4 (Zero conditional mean)

$$E(u_i|x_i) = 0$$

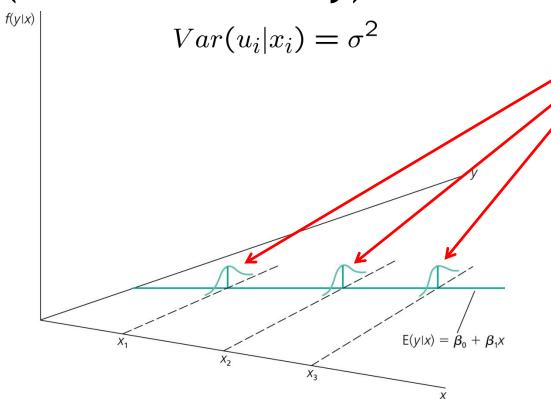
The value of the explanatory variable must contain no information about the mean of the unobserved factors

Assumption SLR.5 (Homoskedasticity)

$$Var(u_i|x_i) = \sigma^2$$

The value of the explanatory variable must contain no information about the <u>variability</u> of the unobserved factors

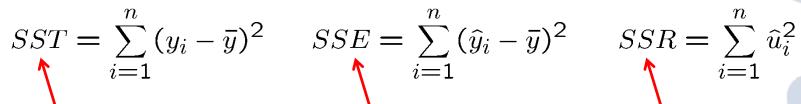
The Gauss-Markov Theorem


- Given our 5 Gauss-Markov Assumptions it can be shown that OLS is "BLUE"
- Best
- Linear
- Unbiased
- Estimator
- Thus, if the assumptions hold, use OLS

More on homoskedasticity

 Graphical illustration of equal variance (homoskedasticity)

The variability of the unobserved influences does not dependent on the value of the explanatory variable



Goodness- of- fit: overview

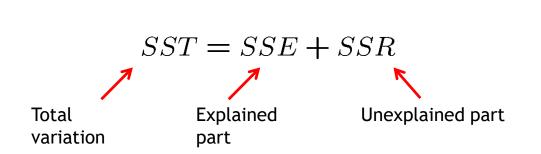
 How well does the explanatory variable explain the dependent variable?

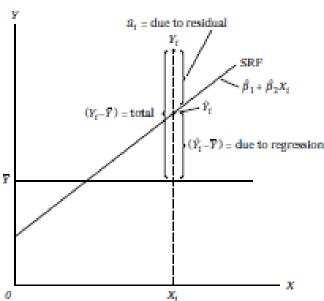
Measures of variation

Total sum of squares, represents total variation in dependent variable

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Explained sum of squares, represents variation explained by regression


$$SSR = \sum_{i=1}^{n} \hat{u}_i^2$$


Residual sum of squares, represents variation not explained by regression

Goodness-of-fit: estimation

Decomposition of total variation

Coefficient of determination

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

R-squared measures the fraction of the total variation that is explained by the regression

Variance of OLS

Homoskedasticity suggests

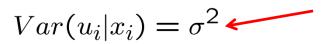
$$Var(u_i|x_i) = \sigma^2 = Var(u_i)$$
 The variance of u does not depend on x, i.e. is equal to the unconditional variance

Error variance

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (\hat{u}_i - \bar{\hat{u}}_i)^2 = \frac{1}{n} \sum_{i=1}^n \hat{u}_i^2$$

One could estimate the variance of the errors by calculating the variance of the residuals in the sample; unfortunately this estimate would be biased

Unbiased estimate of the error variance


$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_i^2$$

An unbiased estimate of the error variance can be obtained by substracting the number of estimated regression coefficients

from the number of observations

Variance of OLS

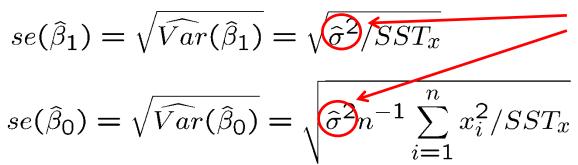
Homoskedasticity suggests

The value of the explanatory variable must contain no information about the variability of the unobserved factors

 Variance of parameter estimates (we omit derivation here)

$$Var(\widehat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2}{SST_x}$$

$$Var(\widehat{\beta}_0) = \frac{\sigma^2 n^{-1} \sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sigma^2 n^{-1} \sum_{i=1}^n x_i^2}{SST_x}$$



Standard errors of the regression coefficients

Error variance

$$E(\hat{\sigma}^2) = \sigma^2$$

Unbiased estimate of the error variance

Plug in $\hat{\sigma}^2$ for the unknown σ^2

Simple Regression Estimation

Term	Formulae
Coefficient of x	$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$
Intercept coefficient	$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$
Coefficient of Determination (r ²)	$r^2 = \frac{\sum_i (\widehat{y}_i - \overline{y})^2}{\sum_i (y_i - \overline{y})^2}$
Standard error (β_1)	$\operatorname{se}(\hat{\beta}_1) = \hat{\sigma} / (\sum (x_i - \bar{x})^2)^{1/2}$ where, $\hat{\sigma}^2 = \frac{\sum_i \widehat{u_i}^2}{n-2}$
Standard error (β_0)	$\operatorname{se}(\beta_0) = \operatorname{sqrt}\left(\frac{\widehat{\sigma}^2 * \sum_i x_i^2}{n \sum_i (x_i - \bar{x})^2}\right)$
t-stat	Coefficient/standard error

Example: In class

atistics							
0.980847369							
0.96206156							
0.957319256							
6.493003227							
10							
df	SS	MS	F	Significance F			
1	8552.727273	8552.727273	202.8679245	5.75275E-07			
8	337.2727273	42.15909091					
9	8890						
Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
24.45454545	6.413817299	3.812791091	0.005142172	9.664256241	39.24483467	9.664256241	39.24483467
0.509090909	0.035742806	14.24317115	5.75275E-07	0.42666785	0.591513968	0.42666785	0.591513968
	0.980847369 0.96206156 0.957319256 6.493003227 10 df 1 8 9 Coefficients 24.45454545	0.980847369 0.96206156 0.957319256 6.493003227 10 df SS 1 8552.727273 8 337.2727273 9 8890 Coefficients Standard Error 24.45454545 6.413817299	0.980847369 0.96206156 0.957319256 6.493003227 10 MS df SS MS 1 8552.727273 8552.727273 8 337.2727273 42.15909091 9 8890 Coefficients Standard Error t Stat 24.45454545 6.413817299 3.812791091	0.980847369 0.96206156 0.957319256 0.957319256 6.493003227 0.957319256 10 0.957319256 40 0.957319256 10 0.957319256 10 0.957319256 10 0.957319256 10 0.95727273	0.980847369 0.96206156 0.957319256 6.493003227 10 5S MS F 1 8552.727273 8 337.2727273 9 8890 Coefficients Standard Error t Stat P-value Lower 95% 24.45454545 6.413817299 3.812791091 0.005142172 9.664256241	0.980847369 0.96206156 0.957319256	0.980847369 0.96206156 0.957319256 6.493003227 10 55 MS F Significance F 1 8552.727273 8 337.2727273 42.15909091 9 8890 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% 24.45454545 6.413817299 3.812791091 0.005142172 9.664256241 39.24483467 9.664256241

Interpretation of Regression Results

- Y = 24.54 + 0.50 X
- Weekly Expenditure = 24.54 + 0.50 Weekly Income
- Within sample averages of expenditure of 60 families when weekly income (X) increases by \$1, the weekly expenditure is expected to increase by \$0.50.
- 0.50 is slope of X
- The intercept represents when weekly income is zero, the weekly expenditure is \$24.54.

Interpretation of Regression Results (2)

- Often the interpretation of the intercept may not have any viable interpretation.
- Sometimes the intercept is interpreted even when there is no such input data
 - For example in the data we do not have any family weekly income of \$0
 - So the interpretation is somewhat limiting.
- Interpretation of coefficient of variable has strong implications.

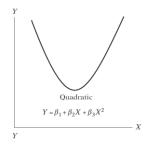
Example-1

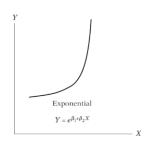
- CEO salary as a function of return on equity
- salary = 963.191 + 18.501 roe
 - Where salary is measured in \$1,000
 - roe is in %
- If the return on equity increases by 1% then the salary is predicted to increase by 18.5 or \$18,500
- If the roe is 0, then the predicted salary is 963.191 or \$963,191

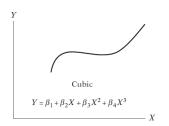
Example-2

- Wage as a function of education
- $\widehat{wage} = -0.90 + 0.54educ$
 - Wage is measured in \$/hr
 - Education denote years of schooling
- 1 more year of education increase hourly wage by \$0.54/hr (this is not the final model though!)
- Person with no education earns \$0.90/hr (not so accurate because the 526 sample has only 8 individuals with no education, so the regression estimate is poor)

Linearity in parameters


Relationship between y and x is linear




$$y = \beta_0 + \beta_1 x + u \longleftarrow$$

In the population, the relationship between y and x is linear


Other examples of linear in parameters

$$- y = \beta_0 + \beta_1^2 x$$

Log level interpretation

 Interpretation of coefficient for different logarithm forms

Model	Dependent Variable	Independent Variable	Interpretation of $oldsymbol{eta}_1$
Level-level	у	X	$\Delta y = \beta_1 \Delta x$
Level-log	y	log(x)	$\Delta y = (\beta_1/100)\% \Delta x$
Log-level	log(y)	X	$%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	log(x)	$\%\Delta y = \beta_1\%\Delta x$

Semi-log form example (1)

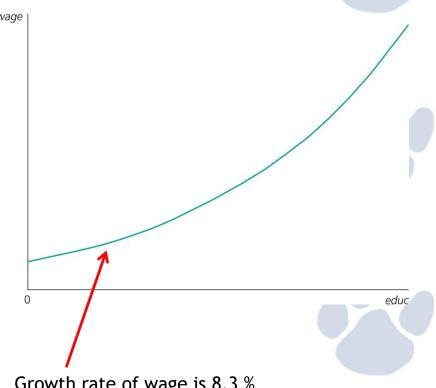
Regression of log wages on years of eduction

$$\log(wage) = \beta_0 + \beta_1 e duc + u$$
 Natural logarithm of wage

 This changes the interpretation of the regression coefficient:

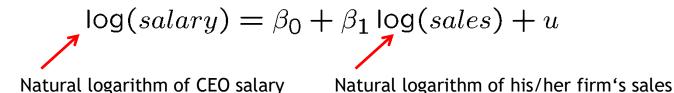
$$\beta_1 = \frac{\partial \log(wage)}{\partial educ} = \frac{1}{wage} \cdot \frac{\partial wage}{\partial educ} = \underbrace{\frac{\partial wage}{wage}}_{\text{wage}} \leftarrow \underbrace{\frac{\text{Percentage change of wage}}{\text{wage}}}_{\text{... if years of education are increased by one year}}_{\text{... if years of education}}$$

Semi-log form example (2)

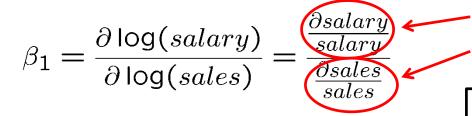

Regression estimate

$$\widehat{\log(wage)} = 0.584 + 0.083 \ educ$$

The wage increases by 8.3 % for every additional year of education (= return to education)


For example:

$$\frac{\partial wage}{\partial educ} = \frac{\frac{+0.83\$}{10\$}}{+1 \text{ year}} = 0.083 = +8.3\%$$


Log-log form example (1)

CEO salary and firm sales

• Interpretation of regression coefficient

Percentage change of salary

... if sales increase by 1 %

Logarithmic changes are always percentage changes

Log-log form example (2)

• Fitted regression equation

$$\widehat{\log}(salary) = 4.822 + 0.257 \log(sales)$$
+ 1 % sales ! + 0.257 % salary

Coefficient interpretation

$$\frac{\frac{\partial salary}{salary}}{\frac{\partial sales}{sales}} = \frac{\frac{+2,570\$}{1,000,000\$}}{\frac{+10,000,0000\$}{1,000,000,000\$}} = \frac{+0.257\% \text{ salary}}{+1\% \text{ sales}} = 0.257$$

